skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Shuangshuang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background Genome-wide association studies (GWASes) aim to identify single nucleotide polymorphisms (SNPs) associated with a given phenotype. A common approach for the analysis of GWAS is single marker analysis (SMA) based on linear mixed models (LMMs). However, LMM-based SMA usually yields a large number of false discoveries and cannot be directly applied to non-Gaussian phenotypes such as count data. Results We present a novel Bayesian method to find SNPs associated with non-Gaussian phenotypes. To that end, we use generalized linear mixed models (GLMMs) and, thus, call our method Bayesian GLMMs for GWAS (BG2). To deal with the high dimensionality of GWAS analysis, we propose novel nonlocal priors specifically tailored for GLMMs. In addition, we develop related fast approximate Bayesian computations. BG2 uses a two-step procedure: first, BG2 screens for candidate SNPs; second, BG2 performs model selection that considers all screened candidate SNPs as possible regressors. A simulation study shows favorable performance of BG2 when compared to GLMM-based SMA. We illustrate the usefulness and flexibility of BG2 with three case studies on cocaine dependence (binary data), alcohol consumption (count data), and number of root-like structures in a model plant (count data). 
    more » « less
  2. Abstract We propose a Bayesian model selection approach for generalized linear mixed models (GLMMs). We consider covariance structures for the random effects that are widely used in areas such as longitudinal studies, genome-wide association studies, and spatial statistics. Since the random effects cannot be integrated out of GLMMs analytically, we approximate the integrated likelihood function using a pseudo-likelihood approach. Our Bayesian approach assumes a flat prior for the fixed effects and includes both approximate reference prior and half-Cauchy prior choices for the variances of random effects. Since the flat prior on the fixed effects is improper, we develop a fractional Bayes factor approach to obtain posterior probabilities of the several competing models. Simulation studies with Poisson GLMMs with spatial random effects and overdispersion random effects show that our approach performs favorably when compared to widely used competing Bayesian methods including deviance information criterion and Watanabe–Akaike information criterion. We illustrate the usefulness and flexibility of our approach with three case studies including a Poisson longitudinal model, a Poisson spatial model, and a logistic mixed model. Our proposed approach is implemented in the R package GLMMselect that is available on CRAN. 
    more » « less
  3. Abstract BackgroundGenome-wide association studies (GWAS) seek to identify single nucleotide polymorphisms (SNPs) that cause observed phenotypes. However, with highly correlated SNPs, correlated observations, and the number of SNPs being two orders of magnitude larger than the number of observations, GWAS procedures often suffer from high false positive rates. ResultsWe propose BGWAS, a novel Bayesian variable selection method based on nonlocal priors for linear mixed models specifically tailored for genome-wide association studies. Our proposed method BGWAS uses a novel nonlocal prior for linear mixed models (LMMs). BGWAS has two steps: screening and model selection. The screening step scans through all the SNPs fitting one LMM for each SNP and then uses Bayesian false discovery control to select a set of candidate SNPs. After that, a model selection step searches through the space of LMMs that may have any number of SNPs from the candidate set. A simulation study shows that, when compared to popular GWAS procedures, BGWAS greatly reduces false positives while maintaining the same ability to detect true positive SNPs. We show the utility and flexibility of BGWAS with two case studies: a case study on salt stress in plants, and a case study on alcohol use disorder. ConclusionsBGWAS maintains and in some cases increases the recall of true SNPs while drastically lowering the number of false positives compared to popular SMA procedures. 
    more » « less